
The 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
24-26 September 2015, Warsaw, Poland

Intelligent monitoring with background
knowledge

Prof. Dr. Kai-Oliver Detken1 , Prof. Dr. Stefan Edelkamp3 , Dr. Carsten Elfers2 ,
Malte Humann3 , Thomas Rix1

1 DECOIT, Fahrenheitstraße 9, 28359 Bremen {detken,trix}@decoit.de
2 neusta GmbH, Konsul-Smidt-Str. 24, 28217 Bremen, c.elfers@neusta.de

3 University of Bremen, Am Fallturm 1, 28205 Bremen, {edelkamp,mhumann}@tzi.de

Abstract – This paper describes the design and imple-
mentation of an intelligent monitoring system, that runs
advanced inference mechanisms to correlate events from
various sensors. Different to existing monitoring approaches,
it exploits taxonomic background knowledge in form of
ontological information to draw refined inferences. The
monitoring system provides abstract knowledge exchange
capabilities between different monitoring clients to support
users during the setup and maintenance process. The system
supports a variety of sensors and collectors, also including
new sensors that can be mapped to the system conveniently.

Keywords – IT security, monitoring, artificial intelligence
(AI), security incident and event management (SIEM),
Icinga (Nagios), event correlation, anomaly detection

I. INTRODUCTION

Monitoring a computer network is an important but
tedious task for a system or security administrator to avoid
severe consequences like network downtime, or data theft
and loss. Even if there are some good sensors available
that might be present in the network, given growing
infrastructures in companies to monitor, it becomes more
and more labor-intensive to judge and analyze, how
dangerous reported incidents are. Intelligent correlation
of detected events and tool support that suggests various
kinds of counter-measures are required.

In this paper we consider concept and implementation
of an intelligent monitoring system, which serves as
backbone for security incident and event management
(SIEM). Several sensors and data collectors have already
been attached to the system, including automated anomaly
detection based on time series analysis. Tool support for
quick integration of new sensors is offered.

First, design options and architecture of the intelligent
monitoring system are described. Next, algorithmic details
of the advanced correlation are considered by taking
hierarchical information into account to allow for its
tolerant pattern matching. An outlook is given on how
computer infrastructure scanning tools can be integrated
into the system providing background information for
further improved inference. Finally, possible forms of

interactivity between the integrated web-based graphical
user interface and the administrator are highlighted.

II. ARCHITECTURE OF THE SYSTEM

IT-asset monitoring has become an essential part in all
enterprise IT infrastructures. Icinga [1] is widely used
in order to fulfill this task. It allows usage of a wide
spectrum of sensors such as Snort, nmap or OpenVAS
and alarms the administrators in case of an incident.
However, this tool has its limitations when it comes to the
complexity of incident analysis. This problem can be well
addressed by the use of an ontology based correlation as
suggested in this paper. Thus additional advantages arise,
which include detecting incident variations or exchanging
incident detection patterns between different clients while
considering the protection of privacy. That way the wheel
does not need to be reinvented every time IT assets
are monitored but the administrator is up-to-date with
knowledge of detecting and handling incidents simply by
downloading shared correlation rules from a server that
can be used ad-hoc in the local system.

Icinga

sensors

time series
analysis

correlation

SIEM front end

knowledge
server

client
NSCA, NRPE, …

JSON

NSCA, JSON

SOAP

ontology

top-level-
ontology

top-level-
ontology

Event Broker

Figure 1. iMonitor architecture overview

Fig. 1 shows an overview of the iMonitor system. Since
the system is based on Icinga, all the Icinga check plugins
can be used and are gathered under the term sensors.
Additionally, the input for Icinga is complemented by
a time series analysis which detects anomalies from

different data sources or directly from Icinga data. An
event handler reports the events received by Icinga to the
correlation using the JSON data exchange format. The
event handler approach was chosen because it allows to
keep Icinga ’as is’ without the need for changes of its
core implementation. The communication over JSON is
easy to configure in Icinga and allows a loose complement
to an existing Icinga system. The correlation requires a
database for fetching rules and an ontology for getting
background knowledge which An additional front-end has
been implemented to make maximum use of the Icinga
data in conjunction with the advanced correlation results.
The front-end adds some missing SIEM features such
as specifying correlation rules and visualizing incidents.
The client setup has access to an external knowledge
server using SOAP requests to exchange knowledge in
form of rules. Beyond this setup exist several tools, e.g.
for semi-automatically integrating new sensors, importing
Icinga asset config files to the ontology or the automatic
discovery of IT-infrastructure [2].

III. KNOWLEDGE REPRESENTATION

One advantage of using ontology based correlation is
the flexibility of background-knowledge that can be used
to detect incidents. The background-knowledge is well
structured by the T-Box part of an ontology defining
a common language for all objects that are needed for
the correlation. Such objects are called concepts. They
may include the possible events fired by the sensors,
types of IT assets like servers, workstations or mobile
devices or information about different software products
and their vulnerabilities. In contrast, enterprise or network
specific information can be stored in the A-Box part of
an ontology which naturally supports to distinguish which
knowledge can be exchanged and which should not be
exchanged since it contains individual or private data.

Exchangeable data comprises of correlation conditions
for detecting incidents, explanations of incidents and
recommendations how to resolve them. In combination
this information is called a rule because it defines the
conditions for its own trigger and the following action
by issuing explanations and recommendations. Since on-
tologies are used to represent the background-knowledge,
SPARQL [3] query language for ontologies can be used to
specify rules. To allow a correlation with the events fired
by the sensors, specific placeholders should be inserted
into the SPARQL query. These placeholders start with a
dollar sign followed by the name of a variable from the
event. For example, Icinga may transmit an event to the
correlation with the host state DOWN and the host address
192.168.178.4. The correlation looks these values up in
the ontology and replaces the placeholders $hoststate and
$hostaddress in the SPARQL query with the appropriate
concepts or individuals. This allows, for example, to
check if an event indicates that a host is down and if some
processes depend on that host. Furthermore, it may be

checked if these processes are critical for some customers
or other business processes. Beside such conditional re-
quests, the correlation allows SPARQL SELECT queries
to gather useful information from the ontology, which is
used for generating explanations and recommendations.
For example, the list of affected customers can be used
in the recommended action, e.g. by suggesting that the
affected customers need to be informed pro-actively.

Figure 2. Excerpt from the ontology structure

To allow time based correlation, e.g. to check if specific
events such as a failed login occurred several times within
the last ten minutes, the ontology is structured according
to the approach of Granadillo et al. [4] on the top level
of the ontology. The approach suggests to separate the
ontology into two parts, the (static) information and the
(dynamic) operations as shown in Fig. 2. While the
information part of the ontology contains background-
knowledge such as asset information, the operations part
holds information that may be included and used by rules.
This has the advantage to easily access both kinds of
information (dynamic/static) with the expressiveness of
SPARQL and to use this information for the rule trigger
conditions, as well as the generation of explanations and
recommendations.

IV. KNOWLEDGE EXCHANGE PROCESS

iMonitor uses a centralized approach for exchanging
knowledge. Therefore, the data first needs to be commit-
ted to a central server (called knowledge server) prior
to being downloaded by any client. Before the rule is
committed to the server, the committing client checks that
the rule only uses concepts from the top-level ontology,
i.e. the T-Box part that is used by all clients. This
avoids that private data is accidentally committed to the
server. The knowledge server checks again if no individual
knowledge has been conveyed to guarantee that the rule
can be integrated into each client using the same top-level
ontology. This process ensures protection of sensitive
data but lacks a check for nonsense rules. In order to
avoid that nonsense rules are made available for download
and integration, there is a quality assurance process in
the knowledge server. When a new rule arrives at the
server it is marked as new. These new rules need to be
verified by a neutral moderator who accepts the given rule.
Only after acceptance by the moderator, the rule can be

downloaded by the clients. The following items sketch a
typical sequence for exchanging knowledge:

• The user selects a rule to commit on the client side.
• The client automatically validates that no individual

knowledge is shared.
• The client transmits the knowledge to the knowledge

server by the use of a web service.
• The knowledge server validates that no individual

knowledge is in the given rule.
• The new rule is sent to an internal pool of new rules.
• A moderator accepts the rule, which then becomes

public.
• Another client can access the rule and integrate it

into its local rule repository.
This scenario describes a global knowledge server;

however, if an enterprise wants to exchange knowledge
only within the enterprise, e.g. among different locations,
the enterprise may host its own knowledge server. Beyond
this, the global knowledge server may be used with ap-
propriately configured groups and rights. An hierarchical
group structure should be set up in which each specific
group can download and integrate all rules from abstract
groups. Enterprise A should be able to download all
global rules; however, not all other enterprises should
be able to download rules from enterprise A without its
authorization. Therefore, the client needs to be able to
decide to which group the rule is committed.

V. TOLERANT PATTERN MATCHING

Basically, the user of the monitoring software is re-
sponsible for managing the rules or the patterns that
the system uses for detecting incidents. It is a difficult
task for the user to consider all possible situations and
to find appropriate rules for them. Most systems handle
missing rules by simply suppressing the generated events.
However, this impedes to find missing patterns. Therefore,
a different approach is suggested: The iMonitor system
helps the user by checking variations of known rules.
A soft or tolerant pattern matching approach is used to
detect these variations in case no rule matches but an
event has occurred. This approach is based on the idea of
abstracting known patterns as suggested in [5] and [6]. In
contrast to the mentioned approaches, the rule definitions
are specifically annotated by SPARQL functions to allow
abstraction and specify how the abstraction is performed.
The main function is the abstract function with three
parameters. The first parameter is the original concept
for the condition in the ontology, e.g. Webhosting from
Fig. 2. The second parameter is the maximum abstraction
of the concept, e.g. IT-Process. The third parameter is a
custom name to reference the abstraction, for example, to
later use it in a recommendation. In this example, there is
only one rule which requires that a Webhosting process is
affected. Furthermore, the event received does not affect a
Webhosting process, however, it affects other IT processs,

e.g. an e-mail process. Given that an event occurred,
something must have happened but the correlation does
not know how to handle the event. The correlation auto-
matically replaces the Webhosting conditionwith the next
more general concept, in this case the IT-Process, which
leads to a matching condition. This abstraction is made
successively to ensure that the abstracted pattern or rule
is as specific as possible. At that time the user knows that
an event has occurred and is not directly handled by the
specified rules. Additionally, he is informed about which
most similar rules match (by abstracting them). This helps
the user to assess the situation by looking for similar
situations in explanations and recommendations, and to
adapt correlation rules if necessary. The other function
is useAbstraction which references the name parameter
of the abstract function to replace concepts in the ex-
planation or recommendation by the abstracted concept.
This is required to adapt explanation and recommendation
according to changed/abstracted conditions.

VI. INTEGRATION OF SENSORS

To integrate new sensors, each correlation requires
mapping of vendor specific event information to a com-
mon language used by the correlation. This mapping can
be modeled manually into the ontology or may already be
given by the top-level-ontology; however, it limits the user
in integrating its own individual sensors. A tool called
sensor mapper was developed to support the user. It reads
the possible outcomes of a sensor from a file and com-
pares it to known elements from the ontology. The user
can optionally specify a top concept for the comparison
to avoid that the tool tries to match all elements in the
ontology. For example, it does not make sense to match
a Snort event outcome with an IT-Asset like a web server
as it is done with Trojan activity. Furthermore, the user
needs to specify which variable of the event he wants to
map, e.g. event text, host name or host state. The tool
compares the elements by matching their names using
the Jaro-Winkler [7] distance and generates a CSV output
file with the best matches. Firstly, the user can revise the
mapping and secondly, import it in the correlation which
allows the correlation to ’understand’ the new sensor.

VII. ANOMALY DETECTION

Sensors may report all sorts of data to Icinga, including
general host and service checks via SNMP for example,
which do not necessarily assess if certain information
implies an incident. A time series based anomaly detec-
tion was developed to further add to the correlation. It is
capable of finding anomalies in generic time series which
consist of numerical data for different points in time,
e.g. information included in performance data provided
by Icinga plugins.

One objective of the approach was to keep the user’s
configuration requirements to a minimum. A similar ap-
proach, Brutlag’s Aberrant Behavior Detection [8], relies

on various smoothing parameters as well as on the length
of a season to be used in the underlying exponential
smoothing process. In this paper’s approach only the
connection with Icinga has to be set up. Any further
information about possible anomalies is learned from the
incoming data itself. Based on those data the anomaly
detection estimates a repeatable pattern for each time
series, if present, and uses this pattern to predict the
latest measurement. The prediction is then compared to
the actual value and rated anomalous or normal.

A slightly modified version of the auto period approach
by Vlachos et al. [9] is used to estimate patterns with an
additional preprocessing step. Since the original measure-
ments may already include anomalous entries, statistical
outliers are removed by bounding them to an appropri-
ate level. Furthermore, the trend is removed from the
time series by subtracting the trend determined via STL
STL [10]. Following Vlachos et al. the periodogram and
circular autocorrelation of the time series are calculated
to select potential pattern length candidates, validate and
refine them. Based on this estimated pattern length all
available data from the time series is combined into a
single pattern. The pattern entry is taken. It corresponds to
the time stamp of the latest measurement while allowing
for a short lag in time. The trend that was removed be-
forehand is added again to create a prediction. Given that
the predicted value rarely matches the exact measurement,
an interval is defined, in which the measured value is not
considered an anomaly. Since a single fluctuation might
be caused by noise, we apply the strategy already used by
Brutlag [8] and demand multiple anomalous entries in a
short period of time to report an incident to Icinga. Single
anomalies can still be reported to Icinga as warnings to
support plugins that gain advantage of those warnings.

VIII. GRAPHICAL USER INTERFACE

A web-based framework was selected for the intelligent
monitoring system to support wide and remote appli-
cability of our system. The architecture of the SIEM-
GUI consists of back-end kernel and front-end mainly.
The back-end manages communication to ticket system,
user management, security incidents, and event database.
These are external systems for the SIEM-GUI software.
The web-interface is responsible for the visualization
of events, incidents, and tasks. Additionally, the SIEM-
GUI has to handle user input. As connection between
both modules a web socket is used. This socket is able
to manage bi-directional communication between both
components. Fig. 3 shows the architecture of the SIEM-
GUI as overview.

The back-end has been written in Java with the frame-
work Spring. It works as endpoint for the provision of
web-socket endpoints and uses STOMP as message for-
mat for the communication via web-sockets. Along with
the security module it can be used for the implementation
of authentication and authorization within the application.

Figure 3. Architecture of the SIEM-GUI

The main issue of the back-end is to establish different
connections to the external services for read and change
data of the front-end. Furthermore, these data have to be
edited in a common format. External services are systems,
which are very important for the functionality of a SIEM
system but can be used as independent systems, too.
They deliver data and provide the SIEM-GUI with their
functionality. The used services for iMonitor are:

• user management
• event database
• correlation
• ticket-system
The interfaces of these services are well defined,

which is why an efficient adaptation to the SIEM-GUI
is possible. The effort to integrate these services is only
determined by implementing specific classes like DAO,
converter, or filter. The remaining part of the application
works independently from specific services.

The front-end was implemented as a single page app
in JavaScript with the framework AngularJS. Because of
using single page app the website does not have to be
reloaded after first selection. If another view has to be
loaded, the content of the current view is rejected by the
help of JavaScript and the new content is inserted. The
framework AngularJS is prepared to handle this by using
modules, which provide this functionality. In addition, a
basic layout was developed and is provided via the web
server. This layout initializes the AngularJS application
and includes an area in which the template of a view may
be inserted. This template is dynamically loaded from the
server as soon as needed. The basic layout is not loaded
again.

IX. EXPERIMENTAL RESULTS

In first experiments the functionality of the correlation
was tested in use-cases. One use-case showed that a host
down event, which affects critical processes, is detected
by correlation and that additional queries are correctly
evaluated for recommendations and explanations, e.g.
when determining the affected customers. With respect
to correlation performance, correlation could handle 406
events per second with one rule and 187 events per
second with five rules. The requested time by a rule to

be processed, of course, depends on the complexity of
rule and background knowledge. So far, the performance
is sufficient since Icinga can be used for pre-filtering
the events from the sensors. However, with an increasing
complexity or in huge infrastructures, the correlation may
reach its limit. Therefore, the correlation was parallelized
and it was achieved to process 535 events per second with
five rules on an AMD Phenom II X6 1055T.

Additionally, several different SIEM systems were
tested in order to be compared to the solution developed
in the iMonitor project:

• OSSIM
• LogApp
• ArcSight
• LogRhythm

All SIEM systems are mainly based on pattern-
detection and do not analyze all available data of
the correlated content. That means, if a malware
pattern does not exist, the attacking process cannot
be recognized. Additionally, even if all log-data are
available in a database, the correlation will not work
with all information. Only the SIEM system LogRhythm
collects a complete set of data from across the entire
IT environment of an enterprise and processes as well
as analyzes most relevant information from multiple
dimensions. The Advanced Intelligence (AI) Engine
by LogRhythm performs correlation and behavioral
analytics on machine data throughout an enterprise’s IT
environment. It identifies and alerts on devices, hosts,
applications and users, which have been targeted and/or
successfully impacted, so that administrators can take
immediate action. By utilizing contextual information
such as vulnerability data along with other disparate
machine data, this SIEM system is used to help correlate
and alert on security events and incidents that have not
yet happened but have the potential to occur. Therefore,
LogRhythm’s SIEM system works similar to the iMonitor
approach and thus can be compared to it.

The next experiment tested the number of events the
iMonitor system is capable of processing and its accord-
ing reactions. The test environment included 80 clients,
server, phones etcetera and the system was tested for
four days (Friday - Monday). For this experiment only
the snort sensor was activated because this sensor had
generated the most events during previous tests. The
experiment started at 10 A.M. on Friday and ended at
4 P.M. on Monday. This period was chosen to gain repre-
sentative statistics for both work days and the weekend.
The system had collected a total number of 2.495.041
events during these four days. Figure 4 tells us that
SNMP and ICMP were the event types that occurred
most. This can be explained by the fact that the active
monitoring system uses SNMP and ICMP to receive
the status of the monitored systems. The amount of the

events can be reduced by adjusting the snort configuration.
Nevertheless, the iMonitor system was able to handle the
number of data without failure.

Figure 4. Distribution of Snort events among event types

X. CONCLUSION AND OUTLOOK

This novel papers’ approach improves monitoring to
reduce the work load of system and security adminis-
trators generated by the maintenance of their computer
infrastructure. To assess the health state of the system,
the approach is able to correlate and condense events
that are triggered by different sensor sources as well as
to learn and generalize the knowledge that comes from
particular observations. Expert knowledge is included in
form of tolerant inference pattern matching rules, from
which most-likely hypotheses are generated. Beyond this,
a machine learning anomaly detection processes the data
for detecting unknown incidents and handling them during
the correlation process.

For the future, we plan to integrate an automated
approach for the tight integration of an intelligent network
scanner that exceeds the functionality of known tools like
nmap. The output of the scanner should be provided in
form of an ontology to our reasoning system.

ACKNOWLEDGMENT

The authors give thanks to the BMWi-ZIM1 for the
financial support as well as all other partners involved in
the research project iMonitor for their great collaboration.
The project consists of the industrial partners DECOIT
GmbH, neusta software development, and the research
partner University of Bremen represented by the institute
TZI – Center for Computing and Communication Tech-
nologies.

1Federal Ministry for Economic Affairs and Energy, “Central Inno-
vation Program SME: http://www.zim-bmwi.de”

REFERENCES

[1] Icinga, “Icinga - open source monitoring,” Feb. 2015,
http://www.icinga.org/.

[2] H. Birkholz, I. Sieverdingbeck, K. Sohr, and C. Bormann, “IO:
an interconnected asset ontology in support of risk management
processes,” in Seventh International Conference on Availability,
Reliability and Security, Prague, ARES 2012, Czech Republic,
August 20-24, 2012. IEEE Computer Society, 2012, pp. 534–541.
[Online]. Available: http://dx.doi.org/10.1109/ARES.2012.73

[3] A. S. Steve Harris and E. Prud’hommeaux, “Sparql 1.1 query
language,” Feb. 2015, http://www.w3.org/TR/sparql11-query/.

[4] G. G. Granadillo, Y. B. Mustapha, N. Hachem, and H. Debar,
“An ontology-driven approach to model siem information and
operations using the swrl formalism,” Int. J. Electron. Secur. Digit.
Forensic, vol. 4, no. 2/3, pp. 104–123, Aug. 2012.

[5] C. Elfers, S. Edelkamp, and O. Herzog, “Efficient tolerant pattern
matching with constraint abstractions in description logic,” in
International Conference on Agents and Artificial Intelligence
(ICAART), 2012, pp. 256–261.

[6] Y. He, W. Chen, M. Yang, and W. Peng, “Ontology based
cooperative intrusion detection system,” in Network and Parallel
Computing, ser. Lecture Notes in Computer Science, H. Jin,
G. Gao, Z. Xu, and H. Chen, Eds. Springer Berlin Heidelberg,
2004, vol. 3222, pp. 419–426.

[7] W. E. Winkler, “The state of record linkage and current research
problems,” in Statistical Research Division, US Census Bureau,
1999.

[8] J. D. Brutlag, “Aberrant behavior detection in time series for net-
work monitoring,” in Proceedings of the 14th USENIX Conference
on System Administration, ser. LISA ’00. Berkeley, CA, USA:
USENIX Association, 2000, pp. 139–146.

[9] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and
structural periodic similarity,” in Proceedings of the 2005 SIAM
International Conference on Data Mining, 2005, pp. 449–460.

[10] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning,
“STL: A seasonal-trend decomposition procedure based on loess,”
Journal of Official Statistics, vol. 6, no. 1, pp. 3–73, 1990.

