A Testbed for Cyber Attack Emulation and Al-Driven Anomaly Detection in Industrial IoT and OT-Networks Prof. Dr. K.-O. Detken (DECOIT®), Prof. Dr. Axel Sikora (University of Applied Science Offenburg), M. Eng. Jaafer Rahmani (University of Applied Science Offenburg) Prof. Dr. Kai-Oliver Detken DECOIT® GmbH & Co. KG Fahrenheitstraße 9 D-28359 Bremen https://www.decoit.de detken@decoit.de #### **Contents** Chapter 1: Introduction and Motivation Chapter 2: Research Context Chapter 3: Contributions and Framework Chapter 4: Data Collection and Attack Simulation Chapter 5: Data Pipeline Chapter 6: Security and Detection Chapter 7: Limitations and Future Work Chapter 8: Conclusions #### **Chapter 1: Introduction** - Problem Statement & Motivation: - Legacy industrial protocols (Modbus, PROFINET) lack encryption/authentication - IIoT connectivity exposes critical infrastructure to malware, ransomware, and botnets (e.g., Mirai) - Advanced Persistent Threats (APTs) exploit multistage tactics beyond simple DoS - Existing testbeds are domain-specific and cannot emulate cross-industry attacks or collect unified data ### **Chapter 2: Research Context (1)** #### Research gaps in current testbeds: | Research Gap Specific Problem | | Impact | | |-------------------------------|---|--|--| | Vertical Limitations | Single-industry focus restricts generalization | Models fail to work across diverse industrial environments | | | Attack Complexity | Few platforms model
multi-stage APTs or
VLAN hopping | Poor detection of sophisticated attack chains and lateral movement | | | Monitoring
Deficiencies | Network, host, and protocol data seldom correlated in real time | Incomplete telemetry hinders multi-layer threat detection | | #### **Chapter 2: Research Context (2)** - Key contributions & innovations: - Generic OT/IIoT testbed for deep field buses - Simultaneous Modbus, MQTT, PROFINET support - Hybrid physical (Raspberry Pi) + virtual IT architecture - Unified NetFlow + auditd + Zeek in Elastic SIEM - MITRE ATT&CK-aligned attack playbook (published in IEEE ICEST 2025, N. Macedonia) - ML-ready datasets (CSV/JSON/ES indices) ### **Chapter 2: Research Context (3)** | Phase | Technique(s) | Entry Point | Impact | Counter-
measure | |------------------------------|--------------|--|------------------------|---| | Initial Access | T1190, T1133 | RDP on
Exchange
Web Service
(EWS) | Network
foothold | Multi-Factor-
Auth. (MFA),
RDP firewall/
VPN | | Discovery
(ICS) | T0842, T0840 | Packet
sniffing | Extract
device info | Encrypt traffic,
continuous
monitoring | | Impair
Process
Control | T0855 | Modbus PLC | Process
disruption | Command
authentication,
anomaly
detection | | Tactic (MITRE Technique (MITRE Entry Point (ICS) Impact (ICS) Security Considera- Description | | | | | | |---|--|-------------|---|---|---| | ATT&CK) [2]
Initial Access - En-
terprise | ATT&CK) [2] T1190: Exploit Public-Facing Application T1133: External Remote Services | EWS via RDP | Establish a foothold in the network | Harden the EWS
by enforcing strong
passwords, MFA,
and restricting RDP
via firewalls or
VPNs | Attacker exploits weak RDP credentials using xfreerdp /u:pwned /p:Password123! /v:10.10.0.30 tcert-ignore to gain initial access. | | Privilege Escalation
- Enterprise | T1078: Valid
Accounts
T1548: Abuse Eleva-
tion Control Mecha-
nism | EWS | Gain administrative access on the EWS | Enforce least
privilege policies
and monitor
PowerShell/CMD
usage for anomalies | Attacker launches an elevated
PowerShell session via CMD
with custom shellcode on the
EWS to escalate privileges. | | Persistence - Enter-
prise | T1053.005:
Scheduled Task/Job | EWS | Maintain long-term
remote access on the
EWS | Monitor and audit
scheduled tasks; en-
force strict admin-
istrative controls on
the EWS | Immediately after privilege escalation, a hidden scheduled task is created on the EWS (If 10.10.0.5) using schtasks to automatically reinitiate RDP sessions. | | Discovery - Enter-
prise | T1049: System
Network
Connections
Discovery | EWS | Map internal
network topology | Deploy intrusion de-
tection systems and
segment the ICS net-
work to restrict scan-
ning activity | Attacker uses nmap -p 502
10.10.0.6 -sV and
Wireshark to discover network
devices and capture traffic. | | Discovery - ICS | T0842: Network Sniffing T0840: Network Connection Enumeration | EWS | Extract detailed ICS device information | Encrypt ICS traffic
and implement
continuous
monitoring to
detect unauthorized
packet capture | Attacker captures and analyzes
Modbus/TCP packets between
the HMI and PLC to extract
device configurations and
communication patterns. | | Lateral Movement -
Enterprise | T1570: Lateral Tool
Transfer | EWS → HMI | Enable remote script
execution on the
HMI | Secure file
transfer channels
on the EWS;
enforce application
allowlisting and use
encrypted transfers
on the HMI | Attack scripts are transferred
from the EWS to the HMI via
an HTTP server and
downloaded using
Invoke-WebRequest. | | Execution - Enter-
prise | T1059: Command
and Scripting
Interpreter | НМІ | Execute malicious scripts and commands | Monitor script exe-
cution on the HMI
and restrict unautho-
rized code via end-
point detection and
response solutions | The attacker executes the
Python Modbus client script of
the HMI to establish
connection with the Modbus
Server and send malicious
commands to it. | | Execution - ICS | T0807: Command-
Line Interface
T0823: Graphical
User Interface | НМІ | Send unauthorized commands to PLC | Enforce strict
authentication on
HMI interfaces and
validate all incoming
commands | Crafted Modbus commands are
sent from the HMI to
manipulate PLC operations,
bypassing built-in safety
protocols. | | Impair Process Control - ICS | T0855:
Unauthorized
Command Message | PLC | Disrupt industrial process control | Implement
robust command
authentication,
detailed logging, and
real-time anomaly
detection on PLCs | Attacker injects malicious
Modbus commands via the
advanced injection script
(modbusinjection.py)
and launches a DoS attack
using (modbusdos.py) to
overload the PLC. | ## **Chapter 3: Testbed Architecture (1)** | Component | Purpose & Rationale | |----------------------------------|---| | Kibana | Interactive dashboard for multi-layer event visualization and incident response | | Elasticsearch | Central log processing, storage, and cross-layer event correlation | | Fleet Server | Central agent orchestration and configuration management | | EWS (Windows Server) | Engineering workstation for administrative control and attack origin point | | HMI (ScadaBR) | Supervisory control interface for operator environment simulation | | MQTT Broker (Raspberry Pi) | IIoT communication handling and telemetry collection | | PLC Server/Client (Raspberry Pi) | Physical ICS device emulation with real-
time telemetry collection | | Smart Switch | Network segmentation enabling VLAN isolation and lateral movement studies | ### **Chapter 3: Testbed Architecture (2)** - Key Design Principles: - Hybrid Architecture: Physical PLCs + virtual IT components for realistic network behavior - Multi-Protocol Support: Simultaneous Modbus, MQTT, PROFINET capability - Unified Monitoring: First real-time NetFlow + auditd + Zeek integration in ICS environments - Attack Surface Diversity: Supports multi-stage APT emulation across IT-OT boundaries ### Chapter 4: Technical Implementation (1) Comprehensive telemetry capture using Elasticsearch-supported integrations: | Layer | Tool | Key Capabilities | Security Value | |----------|---------|--|---| | Network | NetFlow | Flow volume, VLAN tags, protocol IDs, bidirectional analysis | Traffic pattern anomaly detection, lateral movement tracking | | Host | auditd | Process execution,
authentication events, file
I/O, privilege changes | Insider threat detection, privilege escalation monitoring | | Protocol | Zeek | Deep packet inspection
(Modbus/MQTT),
transaction analysis, error
codes | Industrial protocol abuse detection, command injection identification | <u>Key Innovation</u>: First real-time integration of NetFlow + auditd + Zeek within unified SIEM framework for ICS environments → Real-time ingestion into Elastic SIEM enabling cross-layer event correlation and forensic analysis ### **Chapter 4: Technical Implementation (2)** - Systematic threat simulation aligned with MITRE ATT&CK for ICS: - Attack capabilities: - Modbus/TCP packet & register manipulation: direct industrial protocol exploitation - Multi-stage attack progression: EWS compromise → VLAN hopping → PLC tampering - Advanced Persistent Threat (APT) modeling: realistic dwell times and lateral movement - MITRE ATT&CK ICS integration: - Automated technique tagging (e.g. T0855: impair process control) - Systematic attack labeling for supervised learning - Cross-domain mapping spanning enterprise and ICS tactics - Benefits: - Behavioral fidelity: emulates realistic attacker patterns vs. synthetic data - Reproducible scenarios: standardized benchmarking across industrial environments - ML-ready datasets: comprehensive labeled data for AI model training ## **Chapter 5: Validation and Comparison (1)** Comparative analysis with existing testbeds: | Capability | Our Testbed | CPGrid-OT [9] | ICSSIM [13] | |---|--|---|--| | Protocol Support
Integrated Monitoring | Modbus/TCP, MQTT, PROFINET
Unified: network + host + protocol | DNP3 primary; IEC 61850 demonstrated
Separate IT/OT network monitoring | User-defined modules (e.g., Modbus/TCP) Process simulation + network logging | | SIEM Integration | Embedded ELK (real-time) | None | File-based logs (no native SIEM) | | Cross-Layer Correlation | Automated correlation scripted engine | Manual event matching | None | | Attack Framework | MITRE ATT&CK ICS playbooks | Scenario scripts (DoS, spoofing) | Process-level attack scripts | | Data Export Edge Integration | CSV, JSON, ES indices
Agents on physical/virtual edges | Standard power formats (CSV/JSON)
Centralized hardware | Proprietary format (CSV via scripts)
Centralized host | ## Chapter 5: Validation and Comparison (2) - Multi-layer data validation results: - Network: VLAN-tagged flows & protocol detection (>95% coverage) - Host: Privilege escalation & auth events captured - Protocol: Modbus FC anomalies flagged - Cross-layer: Correlated flow + events → security alerts #### **Chapter 6: Dataset generation** - Dataset generation & AI readiness: - Normal + attack traffic, telemetry, host logs - MITRE ATT&CK fields embedded - Export: CSV, JSON, Elasticsearch snapshot - Supports latent-space ML and federated learning net_@timestamp,net_id,net_index.net_agent_ephemeral_id,net_agent_id,net_agent_name,net_agent_vpe,net_agent_vpe,net_agent_vpe,net_data_stream_dataset,net_data_stream_dataset,net_data_stream_tdestination_as_organization_name,net_agent_id,net "Service stopped â€" potential disruption or Denial of Service [src_ip: 141.79.71.151, dst_ip: 141.79.71.255]", disruption, T1489 (Service Stop), "№" "Service stopped â€" potential disruption or Denial of Service [src_ip: 141.79.71.151, dst_ip: 255.255.255.255.255]", disruption, T1489 (Service Stop), ### **Chapter 7: Limitations and Future Work** - Current limitations & challenges: - Raspberry Pi timing (no sub-ms PLC validation) - Modbus-centric attacks; other protocols pending - Lab scale (≤ 12 nodes) vs. industrial (> 100 nodes) - Future work: - Add OPC-UA, extended PROFINET, MQTT-SN... - Deploy in industrial partner environments - Integrate federated learning for distributed IDS - Standardize ICS testbed evaluation criteria - Upscale the testbed by using additional physical/virtual devices #### **Chapter 8: Conclusions (1)** - Key achievements: - First cross-industry OT/IIoT testbed supporting Modbus, MQTT, and PROFINET - Unified real-time monitoring with NetFlow, auditd, and Zeek in single SIEM - Multi-stage attack emulation aligned with MITRE ATT&CK ICS framework - Hybrid physical-virtual architecture combining Raspberry Pi edge devices and virtual IT components - High-fidelity synchronized datasets for Al-driven anomaly detection - Addressed critical gaps in testbed scope, attack complexity, and telemetry integration #### **Chapter 8: Conclusions (2)** - Research impact: - Established foundation for advancing industrial cybersecurity research through comprehensive IT-OT threat emulation and data collection - Future work: - Expanded protocol support, expanded testbed scale, federated learning integration, industrial partner deployments - Acknowledgment: - German Federal Ministry (BMWK) - KISTE project: http://kiste-project.info - Participants: University of Applied Science Offenburg, DECOIT® GmbH & Co. KG ### Thank you for your attention! DECOIT GmbH & Co. KG Fahrenheitstraße 9 D-28359 Bremen https://www.decoit.de info@decoit.de