
The 3rd IEEE International Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems

26-27 September 2016, Offenburg, Germany

y

Transformation between XML and CBOR

for network load reduction

Thomas Rix
1
, Kai-Oliver Detken

1
, Marcel Jahnke

1

1
DECOIT GmbH, Fahrenheitstr. 9, D-28359 Bremen, rix/detken/jahnke@decoit.de, www.decoit.de

Many systems use XML as a standardized information

transfer between different components. The possibility to describe

the data structure through definition documents enables both

sender and receiver to validate information sent and received.

However, the XML format requires relatively much bandwidth for

a transfer via a network. This feature leads to a very high network

load in case of applications with a huge amount of data to be

transferred. The developed SIEM-like system from the SIMU

project (www.simu-project.de) is based on the IF-MAP protocol

and therefore uses the XML-based SOAP to represent and

transfer data. To reduce network load, a technique was developed

during the SIMU project, which allows a lossless transformation

between XML and the relatively new specification called CBOR

(RFC-7049). Thus, mobile terminals may be connected to such

systems with high performance and low bandwidth usage.

Keywords: XML, IF-MAP, CBOR, trusted computing.

I. INTRODUCTION

Today the use of distributed systems is widespread. The
Extensible Markup Language (XML) has become the de-
facto standard for communication between individual
components. The structure of XML documents can be
defined and validated by various schema languages (e.g.
DTD and XSD). Thus, components manufactured by
different producers can communicate with one another
without any problems as long as they all follow the
previously determined specification of data structure.
Moreover, for people it is possible to read these documents
without converting or decoding them first. This means that
XML documents do not necessarily have to be created
mechanically and may be debugged without the use of
specialized software.

However, these features bring along disadvantages. On
one hand, XML elements and their attributes have usually
clear names. They are easily readable but unnecessary long
for the purpose of data transfer. The same applies to
definition and description of namespaces, which are usually
specified as complete URI and are referenced by tokens
assigned to them. The latter is not required, a namespace may
be defined individually for each single element. On the other
hand, XML documents contain a large amount of control
characters. And finally, it is a plain text format which
requires more bytes then necessary to represent common data
types, e.g. integers or IP addresses.

Therefore, XML is suitability for systems, which produce
high amounts of single data entities in a short timeframe, is
limited. Especially if the entities cannot be aggregated

properly prior to network transfer the usage of XML adds a
lot of overhead. SIEM systems can be hold up as an example,
because their sensors send hundreds or even thousands of
events per second to a central aggregator. In case of such
large amounts of data, every saved byte helps to keep the
network infrastructure in an operational state over the period
of the data spike.

II. PROBLEM DESCRIPTION

In order to keep the advantages of XML in such systems, the
bandwidth necessary for each transfer must be drastically
reduced. Text-based formats require too much bandwidth
because of their plain text representation and the trade-offs
this implicates. Hence, a binary format is needed which
allows a lossless conversion from and to XML documents.

The Concise Binary Object Representation (CBOR, RFC-
7049) is a possible solution for this problem. As the name
itself implies, this format was developed to keep the required
overhead as small as possible. It is an extension of the JSON
standard (RFC-4627) and as such it contains the map and
array data types, which are necessary to represent structured
data. By definition all data fields in CBOR are typed and thus
data is stored in its original representation. For example an
integer is stored in its actual byte representation and not as a
sequence of digit characters.

The difficulty consists in transfer XML formatted data
into a structure which conserves all information from XML
the XML document but can be easily described through
CBOR. Additionally, the XML document that is decoded
from the CBOR representation must be semantically
identical to the original document Apart from obvious
information such as attributes, data types and values,
additional structural information such as interleaving and
sequence of data have to be properly conserved.

III. Concise Binary Object Representation (CBOR)

The Concise Binary Object Representation (CBOR) has
been published by the Internet Engineering Task Force
(IETF) in RFC-7049 [1]. Apart from the already mentioned
map and array data types, the specification further defines six
additional types which allow representation of any data item.
Those data types are called “major types” and are numbered
from 0 to 7 which corresponds their byte representation.
Those eight types are:

a. Major Type 0: Unsigned Integer

b. Major Type 1: Negative Integer

c. Major Type 2: Byte-String

d. Major Type 3: UTF-8 Text-String

e. Major Type 4: Array

f. Major Type 5: Map

g. Major Type 6: Tag

h. Major Type 7: Floating Point and special simple data
types

Major type 6 enables tagging of data items. Every major
type, another tag as well, can be provided with a tag to make
additional semantic information available for a decoder. An
order of tags has been registered from IANA and has a fixed
meaning for every CBOR decoder. And so, a string can be
marked in a RFC-3339 date format by assigning the tag 0 to
it. Furthermore, various data types such as bignum and
bigfloat, codings as base64, and other data, which needs a
special handling from the decoder, are marked. Additionally,
tags can be defined according to specific needs.

A field in CBOR, consisting of type description and value,
is called a data item and always has the same structure that
requires at least one byte. The major type is encoded
according to its number as the three most significant bits of
the first byte of a data item. The remaining five bits describe
additional information which interpretation depends on the
major type.

Additional information values from 0 to 23 are interpreted
as the stored value itself for major types 0 and 1. Values
greater than 23 have special meanings and describe the length
of the actual integer that is encoded in the following bytes.
The additional information 24 stands for a length of 8 bit, 25
for 16 bit, 26 for 32 bit and 27 for 64 bit.

The major types 2 and 3 for byte and Unicode strings use
the same encoding of additional information as the major
types 0 and 1. In this case the encoded integer inside the
additional information and possibly following bytes describe
the length of the string in bytes.

The data structures array and map, or major type 4 and 5,
interpret their additional information the same way as the
string types. The exact meaning is different for arrays and
maps. For arrays it describes the number of elements (data
items) inside the array and for maps the number of key-value
pairs inside the map. A key-value pair is made up of two data
items while the first is the key and the second is the value.

The major type 6 represents a tag and codes the ID
number of the tag in the same way as major type 0. Tags may
be used to add additional semantic metadata to any data item,
even other tags. The metadata can be used by the CBOR
decoder to decide how the handle the contained information.
For example a string tagged with the tag 0 should be
interpreted as a RFC-3339 date format string by the decoder.
Other tags mark various data types such as bignum and
bigfloat and base64 encoded data. Pages 15 and 16 of [1]
contain a table of standardized tags that registered with

IANA. The table also states ID number ranges which are free
for everyone to use to define their own tags.

The additional information for the major type 7 defines
what the actual data item represents. This is necessary since
major type 7 may represent several different types of data.
The values 0 to 23 mark simple data without content, e.g.
TRUE, FALSE, NULL, and UNDEFINED. The values 25, 26,
27 describe for a floating point number which is encoded in
the following bytes. The different values describe IEEE 754
half-, single- and double precision floats with the lengths of
16 bits, 32 bits or 64 bits respectively.

The string and data structure major types 2 to 5 can be
marked as data items with unlimited length when they contain
the additional information 31. For the exact structure of such
infinite data items please refer to [1]. To close such a data
type an additional data item of major type 7 with additional
information 31 is used.

IV. TRANSLATION FROM XML INTO CBOR

In order to describe XML formatted data in CBOR, some
problems, which result from different structure of XML and
CBOR or JSON, have to be solved. Specifically they concern
the following aspects of XML:

a. Preserve the sequence of elements

b. Namespaces

c. Attributes of elements

These three concepts are unknown to CBOR. Therefore,
as a first step a structure has to be developed in which this
information may be stored by not requiring too much space at
the same time.

The following examples use a notation based on JSON to
present data, because a native CBOR representation is hardly
readable for humans. Numbers, which are followed by
brackets enclosing a data item, describe CBOR tags.

The sequence of elements is important in XML. Because
of this it has to be preserved in a CBOR data structure. The
only available data type which can ensure that is the array.
Thus, the outer structure has to be an array as it is shown in
listing 1. This encapsulation of data guarantees that the
primary sequence of elements in the XML document remains
unchanged after decoding it from a CBOR data structure:

LISTING 1: TRANSLATION FROM XML INTO CBOR, STEP1

[
 <Element>,

 <Element>
]

The XML document described in listing 2 will serve as an
example throughout this section:

LISTING 2: EXAMPLE OF XML ELEMENTS
<element attribute=”attr-value” xmlns=”some-namespace>

<nested-element attribute=”attr-value” smlns=”some-
namespace”/>

</element>

An XML element consists of four fundamental parts:

a. Namespace

b. Element name

c. Attributes with values

d. Value of elements or further elements

The easiest way to translate these features into CBOR is to
consider attributes and their values as key-value pairs of a
map and introduce special keys for element names and values
(see listing 3):

LISTING 3: XML ELEMENT PRESENTATION WITH SPECIAL KEYS

{
 $name: “element”
 xmlns: “some-namespace”,
 attribute: “attribute-value”,
 $value: {
 $name: “nested-element”,
 xmlns: “some-namespace”,
 attribute: “attribute-value”,
 $value: null
 }
}

However, this procedure has some drawbacks. On one
hand, the special keys have to be chosen in such a way that
they cannot collide inadvertently with actual attributes. This
was guaranteed in the example through the usage of a leading
dollar sign, which is not a valid character for an attribute
name in XML.

The second disadvantage is that new keys appear in the
generated data structure which are not essential and have
never existed in the XML document. The only key-value pairs
in XML are attributes and the namespace definition. So this is
a step backwards, because the addition of new keys is
opposed to the goal to ensure a memory imprint that is as
small as possible.

A better and economical way is to present the features of
XML elements as elements of an array. By convention of this
procedure the first element in an array contains the namespace
URI, the second one is the element name, the third one covers
attributes and the fourth the element’s value or further nested
XML elements.

The attributes are represented as elements of an additional
array. These form pairs whereas the first element of a pair is
the name of the attribute and the second one is the value.
Fundamentally, a map could be used instead of the attribute
array. However, the usage of an array allows for a very slim
CBOR generator and parser that does not even need to know
the data type map.

As shown in listing 4, the resulting CBOR structure has no
need for a namespace key which is a bit of information that
can be saved in comparison to the XML document. Moreover,
in contrast to the previously mentioned map solution, multiple
elements can be concatenated without the need for a new
surrounding array or map. Since a single XML element is
always represented by exactly four array elements a single
array may contain an unlimited number of XML elements.

LISTING 4: XML ELEMENT AS CBOR ARRAY STRUCTURE
[
 “some-namespace”,
 “element”,
 [
 “some-namespace”,
 “nested-element”,
 [
 “attribute”,
 “attribute-value”
],
 null
]
]

To further reduce the required memory, values are stored
in their natural representation instead of strings. Thus, XML
attributes of the type xsd:date or xsd:datetime are converted
into UTC time and added to the CBOR data structure as a
UNIX timestamp. A timestamp is represented by an integer
that was tagged with the CBOR tag 1 (epoch time). Storage as
an integer instead of a string requires less bytes, especially if
date and time have to be represented.

From the XML point of view decimal numbers are strings
instead of floating point numbers. In order to transfer them
into CBOR without a loss due to rounding errors, CBOR
format decimal fraction is used (see page 17 in [1]). It
consists of an array with two elements, the mantissa and the
exponent with a base of 10. The array is marked with the
CBOR tag 4. In this way it is ensured that no round-off errors
appear during the conversion between XML and CBOR.

In order to represent IPv4, IPv6, and MAC addresses,
additional CBOR tags have to be defined. Since they are not
standardized, any random free tag number may be used. In the
project SIMU the following ID numbers were applied: 40001
(IPv4), 40002 (IPv6), and 40003 (MAC).

These tags are used in conjunction with byte strings
(major type 2) which contain the corresponding addresses in
their respective byte representation. As with date and time
formats, saving these addresses as byte strings can save a lot
of memory in contrast to a string representation. This is
important for SIEM systems, because most of the events
generated by them contain one or more types of network
addresses.

V. OPTIMIZATION THROUGH USAGE OF A

DICTIONARY

The procedure of transforming XML documents into CBOR
structures described in chapter 4 provides a possibility of
saving bandwidth required in case of network transfers.
However, a big part of optimization is equalized by the
necessity of storing the namespace URI for every single
element. XML allows definition of aliases in document
header whereby there is no need to specify the whole
namespace’s URI for every element. The CBOR structure
does not provide this option.

However, the optimization can be reproduced with

aliases, which are defined in an additional dictionary (see

figure 1). The dictionary allows translation between a short

form and a complete namespace URI. But beyond that the

CBOR-XML dictionary allows many more possibilities to

substitute fixed values in XML. Several other static parts of

an XML document such as element names, attributes, and

enum values may be replaced by aliases too. Since in this

case CBOR is only a transport format, the only thing that has

to be ensured is that the resulting XML is equivalent to the

source XML document.

FIGURE 1: CONVERTING XML TO CBOR

As described in section III, CBOR allows to save integers

from 0 to 23 as a single byte. Using this technique a huge

reduction of memory usage can be achieved by translating

static XML names into integers with the help of a dictionary.

In case of big documents, which contain more than 24

different static XML names, a second byte has to be used to

describe the values of 24 and higher. This is not desirable.

Therefore, the dictionary is arranged hierarchically. An alias

has to be unambiguous on a respective hierarchy level only.

Thereby, in most documents it is possible to handle the

replacements with the 24 available one byte integers.

The dictionary is defined in a plain text format. Each line

describes a static XML name and its CBOR alias. The data

format is described by the EBNF shown in listing 5.

LISTING 5: ENBF OF DICTIONARY DEFINITION

Static XML names may be substituted by one of the six

CBOR data types: unsigned integer, negative integer, double,

byte string, UTF-8 string, or Boolean. As mentioned above,

the best compression can be achieved by using single byte

data items such as unsigned or negative integer and Boolean.

However, if desired the dictionary allows usage of more

verbose substitutions to keep compressed CBOR structures

more readable.

Listing 6 shows an exemplary dictionary definition for

the already known XML document. Because it is stored as a

plain text file, it can easily be exchanged between

communicating parties. Every static XML name can be

substituted by the integer 0 because they are all located on

different hierarchy levels. Even different types of elements

on the same hierarchy level, attributes and nested elements

for example, can be replaced by the same integer because the

CBOR structure stores them in different arrays.

LISTING 6: EXEMPLARY DICTIONARY
n'some-namespace'[uint(0)] {
 t'element'[uint(0)] {
 a'attribute'[uint(0)]
 t'nested-element'[uint(0)] {
 a'attribute'[uint(0)]
 }
 }
}

VI. APPLICATION EXAMPLE WITH IF-MAP

The SIEM-like system developed in the SIMU project
applies the Trusted Computing Group’s IF-MAP protocol
([4] and [5]) as a transport and storage format.

In IF-MAP entities of a monitored system are represented
by so called identifiers. These can be servers, clients,
infrastructure elements, or software services. Identifiers
include only immutable and identifying information about an
entity. Mutable attributes and relations between identifiers
are described as metadata. In contrast to identifiers, metadata
may be created, deleted or changed at any time. With these
elements, identifiers and metadata, the current state of the
monitored system can be as a graph in a MAP server
(MAPS). Additionally the state can be queried from the
MAPS. The sensors of the system are called MAP clients
(MAPC) and keep the metadata up to date. Versioning of a
MAP graph, which is not a feature that is included in the IF-
MAP standard, allows to analyze changes in the system’s
state over time.

In order to transfer information between MAPC and a
single MAPS, HTTP(S) connections are used. The
transferred data is formatted as a SOAP (Simple Object
Access Protocol) messaged and attached to the body of
HTTP packets. Because SOAP is a special XML format, all
previously mentioned disadvantages of XML regarding the
data transfer apply to it.

In case of an actual network attack, the sensors of a SIEM
system can create a huge amount of events in a very short
timeframe. Usually all of these events have to be transferred
to the analyzing component one by one. This puts a lot of

stress on the network and ultimately may lead to failures due
to network overload.

FIGURE 2: COMMUNICATION WITH CBOR

The procedure described in this paper was used in the
project SIMU to avoid that problem and to reduce required
bandwidth per data transfer. As MAP clients and MAP
servers do not support CBOR natively, so called IF-MAP-
CBOR proxies were used during the communication. They
translate between SOAP and CBOR format and operate on a
MAPC or MAPS machine locally. Thereby, the HTTP/SOAP
protocol is required only for the local connection between a
proxy and MAPC or MAPS. A socket connection is used
between the proxies to reduce overhead that would otherwise
be required to establish new HTTP connections for every
data entity. Figure 2 shows how the CBOR-IF-MAP proxies
were integrated into the IF-MAP communication.

VII. POSSIBLE SAVINGS IN IF-MAP DATA

STRUCTURE

In order to present the effectiveness of the procedure, three
exemplary IF-MAP structures from [4] were first generated
as SOAP-XML and afterwards as a CBOR byte stream. The
size in bytes of the resulting output then was compared. In
the process the transformation in CBOR was conducted
respectively with and without a dictionary to show the
substitution effect on the amount of bytes. Furthermore, all
data were compressed with GZIP to determine effectiveness
of CBOR presentation in contrast to a GZIP compressed
HTTP connection. Thereby, standard settings of GZIP were
used. GZIP compression may be further increased by using
the best possible settings but this has an impact on
compression speed.

The test suite was developed in Java. The ifmapj
1
 library

from the Trust@HsH research group of the University of
Applied Sciences Hanover has been used as IF-MAP
implementation. To convert IF-MAP into CBOR

2
 the Java

libraries developed during the SIMU project were used. The
same applies for the dictionary implementation

3
. Equally, the

IF-MAP dictionary definition was applied, which was

1
 https://github.com/trustathsh/ifmapj

2
 https://github.com/decoit/cbor-if-map-tnc-base

3
 https://github.com/decoit/cbor-xml-dictionary

created as a part of the project and which describes all
namespaces, XML elements, attributes, and enum values that
exist in IF-MAP as single-byte unsigned integers. All
libraries used for this test suite are available as open source
software under the links given below. Using the respective
mechanisms of the libraries the examples from the IF-MAP
specification were implemented with data objects and then
encoded by the library’s emitter. Thus the resulting XML
document already contains the required SOAP envelope
elements and namespaces.

All tests were realized locally, why only the pure payload
size was considered and thus any HTTP overhead was
ignored. Moreover, ifmapj creates XML documents in which
every element contains a namespace attribute. Theoretically,
the XML documents could be minimized by using
namespace aliases. Nevertheless, this implementation was
used in the SIMU project and is one of the most complete
libraries available for IF-MAP with Java, which makes it a
good opponent for this comparision.

The chosen examples represent common operations
which have to be conducted on a MAP server. The examples
1 and 2 deal primarily with tasks which are done by sensors
of a SIEM system, namely adding and deleting metadata in
MAP graphs. The third example resembles a search for
metadata and identifiers in MAP graphs which is usually
performed by the analyzing system components.

A. Example 1: publish notify request

As a first example, a publish notify request will be used. The
XML document can be found in paragraph 3.9.2.2 of [4] on
page 40. It contains an event metadata which should be
attached to an IP address identifier.

The size of SOAP-XML, which is created thereby,
amounts 712 bytes. By the use of GZIP it can be reduced of
approx. 43%, which means 408 bytes.

Without the use of the dictionary, the CBOR byte string
consists of 436 bytes which can be reduced of approx. 30%
to 305 bytes while using GZIP. If the IF-MAP-CBOR
dictionary is applied, the created byte string has only 87
bytes. This is equal to about 20% of the previous byte string
and only 12.2% of the original XML document. However, a
GZIP compression has a disadvantage just here and increases
the byte string to a length of 107 bytes.

B. Example 2: publish delete request

The second example is a publish delete request. It can be
found in paragraph 3.9.2.3 of [4] on page 41. It deletes all
metadata which are attached to both the specified IP address
and MAC address identifiers in a MAP graph.

The size of SOAP-XML amounts to 358 bytes and can be
compressed by approx. 30% to 251 bytes.

The CBOR byte string consists of 256 bytes if the
dictionary is not applied. It can be shortened to 167 bytes
what corresponds with approx. 65%. If the dictionary is in
use, the byte string can be reduced to only 44 bytes. This
corresponds to approx. 17.2% of the CBOR byte string
without using the dictionary and only 12.3% of the original

XML document. As with the first example, a GZIP
compression extended the byte string to a length 63 bytes.

C. Example 3: search request

An IF-MAP search request will serve as third example. It is
required if an analyzing system component requests
information from the MAP server. The XML document
representing the request can be found in the paragraph
3.9.3.4 of [4] on page 45.

The SOAP-XML, which is generated by ifmapj, has a
size of 506 bytes. Using GZIP it can be reduced to 331 bytes
which is approx. 65.4% of its initial size.

The CBOR byte string has a length of 365 bytes if the
dictionary is not in use. GZIP achieves a compression to 255
bytes which corresponds with a reduction of approx. 30%.
Application of the dictionary shortens the byte string length
to 168 bytes or approx. 46% of the original byte string and
approx. 33.2% of the SOAP-XML. This time, the usage of
GZIP achieves further compression to 141 bytes.

VIII. CONCLUSION

Table 1 contains a brief overview of the test results. One can
observe that the transformation of SOAP-XMAL into CBOR
is efficient, especially if a dictionary is used. Without a
dictionary the compression achieved by the CBOR
transformation is very similar to GZIP, which means that the
latter would be the better solution because it requires less
computational overhead.

The substitution of namespaces, element names,
attributes, and enum values with unsigned integers allows a
huge reduction of required bandwidth for most use cases.
The main reason for this is the efficient feature of CBOR to
store small integers as single byte entities. Because of the
hierarchical arrangement of the dictionary it should be
possible to use only the integers 0 to 23 for most XML
documents. If required, the range of negative single byte
integers (-1 to -24) may be used as well, which allows 24
further elements on each hierarchy level to be substituted by
single byte entities.

TABLE I. PRESENTATION OF THE RESULTS

 SOAP-XML

(gzip)

CBOR

(gzip)

CBOR with

dictionary (gzip)

Example 1 712 bytes (408) 436 bytes (305) 87 bytes (107)

Example 2 358 bytes (251) 256 bytes (167) 44 bytes (63)

Example 3 506 bytes (331) 365 bytes (255) 168 bytes (141)

The examples 1 and 2 represent typical use cases of a

SIEM system sensor’s network traffic, which was the main
concern to develop this technique. Reducing the data to be

transferred by approx. 88% per request is a huge
improvement to solve the problem of network overload.

The, in contrast to example 1 and 2, relatively bad
compression in example 3 is caused by the many free text
attributes an IF-MAP search request contains. These texts
cannot be substituted effectively and thus have to be encoded
as UTF-8 strings in CBOR which results in comparatively
long byte strings.

Moreover, the results indicate that an additional
compression of communication channels by using GZIP can
be counterproductive when a dictionary is in use. Apart from
structures with much free text, such as the search request, an
additional application of GZIP compression causes an
increase of the CBOR byte string length. Thus, this is not
advisable.

The results were discussed with the Trusted Computing
Group (TCG) during and after the SIMU project’s lifecycle
in order to recommend CBOR as a new transfer protocol for
IF-MAP. Currently some work has been done to embed
CBOR into the new IF-MAP specification.

Acknowledgment

The authors give thanks the BMBF [6] for the financial
support as well as all other partners involved in the research
project SIMU for their great collaboration. The project
consortium consisted of the industrial partners DECOIT
GmbH, NCP engineering GmbH, macmon secure GmbH,
and the research partners Fraunhofer SIT, and University of
Applied Sciences and Arts of Hanover. A special
appreciation goes to Fraunhofer SIT for their support during
the development of the XML description in CBOR and
making the CBOR-proxy available as well as to the
University of Applied Sciences and Arts of Hanover for their
extensive work and developments in the IF-MAP area.

References

[1] Carsten Bormann, Paul Hoffman: Concise Binary Object
Representation (CBOR). Internet Engineering Task Force, RFC-7049,
ISSN: 2070-1721, October 2013

[2] D. Crockford: The application/json Media Type for JavaScript Object
Notation (JSON). Internet Engineering Task Force, RFC-4627,
Network Working Group, July 2006

[3] G. Klyne, C. Newman: Date and Time on the Internet: Timestamps.

Internet Engineering Task Force, RFC-3339, Network Working Group,
July 2002

[4] Trusted Computing Group: TNC IF-MAP Binding for SOAP Version

2.2 Revision 10. Trusted Computing Group, Incorporated, März 2014
[5] Trusted Computing Group: TNC IF-MAP Metadata for Network

Security Version 1.1 Revision 9. Trusted Computing Group,

Incorporated, Mai 2012
[6] Federal Ministry of Education and Research:

http://www.bmbf.de/en/index.php

